Answered

Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

The length of a line segment is 7. Its end points are (1, 3) and (k, 3). Solve for k. Is there more than one solution? Explain.

Sagot :

luana
[tex]Endpoints:\\\\A(1,3)\ and\ B(k,3)\\\\Formula\ for\ length\ of\ line:\\\\ |AB|=\sqrt{(x_b-x_a)^2+(y_b-y_a)^2}\\\\ |AB|=7\\\\7=\sqrt{(k-1)^2+(3-3)^2}\\\\ 7=\sqrt{k^2-2k-1}\ \ |^2\\\\ 49=k^2-2k-1 [/tex][tex]49=k^2-2k-1\\\\ -k^2+2k+1+49=0\\\\ -k^2+2k+50=0\\\\ \Delta=b^2-4ac\\\\a=-1,\ b=2,\ c=50 \\\\\Delta=(2)^2-4*(-1)*50=4-=4+200=204\\\\ \sqrt{\Delta}=2\sqrt{51}[/tex][tex]\\\\k_1=\frac{-b-\sqrt{\Delta}}{2a}\ \ k_1=\frac{-2-2\sqrt{51}}{2*(-1)}=1+\sqrt{51} \\\\\ or\ k_2=\frac{-b+\sqrt{\Delta}}{2a}\ \ k_1=\frac{-2+2\sqrt{51}}{2*(-1)}=1-\sqrt{51}[/tex]