Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

give an example of a rational function whose graph has two vertical asymptotes, x=2 amd x=3. two x-intercepts, 0 and -3, and one horizontal asymptote, y=2

Sagot :

[tex]\boxed{f(x)=\frac{2x(x+3)}{(x-2)(x-3)}}\\\\check:\\vertical\ asymptotes:(x-2)(x-3)\neq0\to x\neq2\ and\ x\neq3\\\boxed{x=2\ and\ x=3}\\\\x-intercepts:f(x)=0\iff\frac{2x(x+3)}{(x-2)(x-3)}=0\iff2x(x+3)=0\\\iff 2x=0\ or\ x+3=0\iff \boxed{x=0\ or\ x=-3}\\\\horizontal\ asymptote:\\\lim\limits_{x\to\pm\infty}\frac{2x(x+3)}{(x-2)(x-3)}=\lim\limits_{x\to\pm\infty}\frac{2x^2+6x}{x^2-5x+6}=\lim\limits_{x\to\pm\infty}\frac{x^2(2+\frac{6}{x})}{x^2(1-\frac{5}{x}+\frac{6}{x^2})}=\frac{2}{1}=\fbox2[/tex]