At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

find the equation of the line that passes through P(7,20) and Q the midpoint of R (-3,5) and S (5,11)

Sagot :

First we have to find midpoint of R and S.
We can use formula such for it.[tex]Qx= \frac{Rx+Sx}{2}[/tex] and [tex]Qy= \frac{Ry+Sy}{2}[/tex].
We obtained coordinates of point Q 
[tex]Qx= \frac{-3+5}{2}=1[/tex] and [tex]Qy= \frac{5+11}{2}=8 [/tex]

Now, we can find the line equation using formula y=ax+b. 
We can substitute coordinates of P and Q to this formula and solving system of equation get the answer.

After substituting we obtaind such system
[tex]\left \{ {{20=7a+b } \atop {8=a+b}} \right. [/tex]

From the system of equation we obtain result
[tex] \left \{ {{a=2} \atop {b=6}} \right. [/tex] 

Now we can put our resuts to general line equation.
[tex]y=2x+6[/tex]
Lilith
[tex] R (-3,5), \ \ \ S (5,11) \ midpoint \ of \ R \ and \ S \\ \\ Midpoint \ Formula \\\\(x,y)= \left ( \frac{x_{1}+x_{2}}{2},\frac {{}y_{1}+y_{2}}{2} \right ) \\ \\Q= \left ( \frac {-3+5}{2},\frac { 5+11}{2} \right ) \\ \\Q= \left ( \frac {2}{2},\frac { 16}{2} \right ) \\ \\Q= \left ( 1 ,8) \right )[/tex]

[tex] the \ equation \ of \ the \ line \ that \ passes \ through \ P(7,20) \ and \ Q (1,8)\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} } \\ \\m=\frac{ 8-20}{1-7 } =\frac{-12}{-6}=2\\\\the \ slope \ intercept \ form \ is : \\ \\ y= mx +b \\\\20=2\cdot 7+b \\\\20=14+b\\\\b=20-14\\b=6\\\\y=2x+6[/tex]