Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

find the equation of the line that passes through P(7,20) and Q the midpoint of R (-3,5) and S (5,11)

Sagot :

First we have to find midpoint of R and S.
We can use formula such for it.[tex]Qx= \frac{Rx+Sx}{2}[/tex] and [tex]Qy= \frac{Ry+Sy}{2}[/tex].
We obtained coordinates of point Q 
[tex]Qx= \frac{-3+5}{2}=1[/tex] and [tex]Qy= \frac{5+11}{2}=8 [/tex]

Now, we can find the line equation using formula y=ax+b. 
We can substitute coordinates of P and Q to this formula and solving system of equation get the answer.

After substituting we obtaind such system
[tex]\left \{ {{20=7a+b } \atop {8=a+b}} \right. [/tex]

From the system of equation we obtain result
[tex] \left \{ {{a=2} \atop {b=6}} \right. [/tex] 

Now we can put our resuts to general line equation.
[tex]y=2x+6[/tex]
Lilith
[tex] R (-3,5), \ \ \ S (5,11) \ midpoint \ of \ R \ and \ S \\ \\ Midpoint \ Formula \\\\(x,y)= \left ( \frac{x_{1}+x_{2}}{2},\frac {{}y_{1}+y_{2}}{2} \right ) \\ \\Q= \left ( \frac {-3+5}{2},\frac { 5+11}{2} \right ) \\ \\Q= \left ( \frac {2}{2},\frac { 16}{2} \right ) \\ \\Q= \left ( 1 ,8) \right )[/tex]

[tex] the \ equation \ of \ the \ line \ that \ passes \ through \ P(7,20) \ and \ Q (1,8)\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} } \\ \\m=\frac{ 8-20}{1-7 } =\frac{-12}{-6}=2\\\\the \ slope \ intercept \ form \ is : \\ \\ y= mx +b \\\\20=2\cdot 7+b \\\\20=14+b\\\\b=20-14\\b=6\\\\y=2x+6[/tex]