Answered

Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

16x^2-24x+7=0 equation and/or inequalities

Sagot :

It is quadratic equation.
First we have find delta given by formula: delta=[tex]b^{2}-4ac[/tex]
where our 
a=16
b=-24
c=7
so, delta=[tex] 24^{2}-4*16*7=128[/tex]
Because delta is positive, there is real results.
Now we can use next formula x=[tex] \frac{-b+ \sqrt{delta} }{2a} [/tex]
, to find roots (results, 2 results because its quadratic equation and delta is greater than 0)
x1=[tex] \frac{24+ \sqrt{128} }{2*16} = \frac{3+ \sqrt{2} }{4} [/tex]
x2=[tex] \frac{24- \sqrt{128} }{2*16} = \frac{3- \sqrt{2} }{4} [/tex] 
[tex]16x^2-24x+7=0\\ 16x^2-24x+9-2=0\\ (4x-3)^2=2\\ 4x-3=\sqrt2 \vee 4x-3=-\sqrt2\\ 4x=3+\sqrt2 \vee 4x=3-\sqrt2\\ x=\frac{3+\sqrt2}{4} \vee x=\frac{3-\sqrt2}{4}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.