Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A bookstore can purchase several calculators for a total cost of $120. If each calculators cost $1 less, the bookstore could purchase 10 additional calculators at the same total cost. How many calculators can be purchased at the regular price?
How do I put this Into an equation that I can solve?


Sagot :

luana
[tex]x-number\ of\ calculators\ sold\ in\ regular\ price\\\\ y-\ \ first\ price\\\\ (y-1)\ \ -second\ price\\\\x=\frac{120}{y}\\ x+10=\frac{120}{y-1}\\\\Substitude\ x=\frac{120}{y}\ into\ the\ second\\\\\ \frac{120}{y}+10=\frac{120}{y-1}\ \ |-\frac{120}{y-1}-10\\\\ \frac{120}{y}-\frac{120}{y-1}=-10\\\\Make\ a\ common\ denominator\\\\ \frac{120(y-1)}{y(y-1)}-\frac{120y}{(y-1)y}=-10 \frac{120y-120)}{y(y-1)}-\frac{120y}{(y-1)y}=-10\\\\ \frac{120y-120-120y}{y(y-1)}=-10[/tex][tex]Assumptions:\\y \neq 0\ \ \ and\ \ y \neq 1\\\\ \frac{-120}{y(y-1)}=-10\ \ \ | *y(y-1) \\\\ -120=-10y(y-1)\\\\ -120=-10y^2+10y\\\\ 10y^2-10y-120=0\ \ \ |:10\\\\ y^2-y-12=0\\\\Factor\ equation\\\\ y^2+3y-4y-12=0\\\\ (y-4)(y+3)=0\\\\Solutions:\ \ y=4\ \ and\ \ y=-3[/tex]