Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A lab needs a 20 liters of a 15% acid solution. The lab only has a 10% acid solution and a 30% acid solution. How much of the 10% acid solution will they need to mix with the 30% solution to obtain 20 liters of a 15% solution?

Sagot :

KMK32
To start, it's always easiest to turn percentages into decimals- so let's do that first:

10% Weak solution = .1
30% Strong solution = .3
15% Medium solution = .15

Next we need to assign a value to the amount of each solution we have or need.

Weak solution = x (because we don't yet know how much we need, we give it a variable)
Strong solution= 20-x (because once we determine x and know there are 20 total liters, we can simply subtract to figure out the remainder)
Medium solution= 20 (because in total we need 20 liters)

Now we create the formula to solve for x.

.1x+.3(20-x)=.15(20)
x=15

So you would need 15 liters of the weaker 10% solution and 5 liters of the stronger 30% solution. This makes sense b/c the average 15 is much lower than 30 so we'd expect to need much more of the weaker solution. 

We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.