Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Given that
air resistance is negative.
Hence the values are: 2.2 s G = 9.8 m/s2
Solution
Velocity = vf-vi = 0 – vi = -vi
V = 9.8m/s2 x 2.2 s = 21.56 m/ s (cancel one s out)
Vi = 21.56 m/s
Then (s) displacement is
S=v x t
Average velocity = (21.56 m/s + 0 / 2)
Average velocity = 10.78 m/s
Time = 2.2 s
S = 10.78 m/s x 2.2 s (cancel s)
S = 23.716 m
Therefore the ball was at 23.716 meters in the air.
Hence the values are: 2.2 s G = 9.8 m/s2
Solution
Velocity = vf-vi = 0 – vi = -vi
V = 9.8m/s2 x 2.2 s = 21.56 m/ s (cancel one s out)
Vi = 21.56 m/s
Then (s) displacement is
S=v x t
Average velocity = (21.56 m/s + 0 / 2)
Average velocity = 10.78 m/s
Time = 2.2 s
S = 10.78 m/s x 2.2 s (cancel s)
S = 23.716 m
Therefore the ball was at 23.716 meters in the air.
We are only interested in the vertical motion of the ball.
The ball remains in air for t=2.2 s, so we can say that it reaches its maximum height in t=1.1 s (half the time) before falling down. This is an uniformly accelerated motion with constant acceleration g=9.81 m/s^2, so the maximum height reached by the balls is given by:
[tex]S=\frac{1}{2}gt^2 = \frac{1}{2}(9.81 m/s^2)(1.1s)^2=5.93 m[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.