Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The Mass of the Earth is larger than that of the moon resulting in a larger Fg because the strength of gravity on earth is stronger.
Weight = mass x gravitational field strength
Gravitational field strength is determined by two factors: how large the planet/moon/body is, and how close the object is to that body. Discounting the second factor (which has a minute effect on field strength over distances below 100km or so), the size of the planet/moon/body is proportional to the field strength.
On Earth, the field strength is roughly 9.81N/kg (where kg is the SI unit of mass and Newtons are the SI unit of weight) - this means that every kilo of mass weighs just less than 10N here.
Conversely on the moon, the field strength is roughly 1.6N/kg, meaning that every kilo weighs only 1.6N there. The field strength is so much smaller because the moon has less that 1/81th of the Earth's mass.
In conclusion, take the example of a a 5kg bowling ball: on Earth it would weigh 5 * 9.81 = 53.955N whereas on the moon it would weigh 5 * 1.6 = 8kg. They have the same mass in both places, but weigh very different amounts.
Gravitational field strength is determined by two factors: how large the planet/moon/body is, and how close the object is to that body. Discounting the second factor (which has a minute effect on field strength over distances below 100km or so), the size of the planet/moon/body is proportional to the field strength.
On Earth, the field strength is roughly 9.81N/kg (where kg is the SI unit of mass and Newtons are the SI unit of weight) - this means that every kilo of mass weighs just less than 10N here.
Conversely on the moon, the field strength is roughly 1.6N/kg, meaning that every kilo weighs only 1.6N there. The field strength is so much smaller because the moon has less that 1/81th of the Earth's mass.
In conclusion, take the example of a a 5kg bowling ball: on Earth it would weigh 5 * 9.81 = 53.955N whereas on the moon it would weigh 5 * 1.6 = 8kg. They have the same mass in both places, but weigh very different amounts.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.