Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

How do you find the derivative of y=tan(arcsin(x))y=tan(arcsin(x)) ?

Sagot :

Answer is in the attachment below. If you have any questions about the workings, just leave a comment below.
View image Аноним
[tex]y=tan(arcsin(x))=\frac{sin(arcsin(x)}{cos(arcsin(x))}\\\\We\ know:\\sin(arcsin(x))=x\ and\ cos(arcsin(x))=\sqrt{1-x^2}\\\\therefore:y=\frac{x}{\sqrt{1-x^2}}\\\\y'=\left(\frac{x}{\sqrt{1-x^2}}\right)'=\frac{x'\sqrt{1-x^2}-x(\sqrt{1-x^2})'}{(\sqrt{1-x^2})^2}=\frac{\sqrt{1-x^2}-x\cdot\frac{1}{2\sqrt{1-x^2}}\cdot(-2x)}{1-x^2}\\\\=\frac{\sqrt{1-x^2}+\frac{x^2}{\sqrt{1-x^2}}}{1-x^2}=\frac{\frac{1-x^2+x^2}{\sqrt{1-x^2}}}{1-x^2}=\frac{1}{(1-x^2)\sqrt{1-x^2}}=\frac{1}{(1-x^2)(1-x^2)^\frac{1}{2}}[/tex]
[tex].\center\boxed{=\frac{1}{(1-x^2)^\frac{3}{2}}}[/tex]