At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer is in the attachment below. If you have any questions about the workings, just leave a comment below.

[tex]y=tan(arcsin(x))=\frac{sin(arcsin(x)}{cos(arcsin(x))}\\\\We\ know:\\sin(arcsin(x))=x\ and\ cos(arcsin(x))=\sqrt{1-x^2}\\\\therefore:y=\frac{x}{\sqrt{1-x^2}}\\\\y'=\left(\frac{x}{\sqrt{1-x^2}}\right)'=\frac{x'\sqrt{1-x^2}-x(\sqrt{1-x^2})'}{(\sqrt{1-x^2})^2}=\frac{\sqrt{1-x^2}-x\cdot\frac{1}{2\sqrt{1-x^2}}\cdot(-2x)}{1-x^2}\\\\=\frac{\sqrt{1-x^2}+\frac{x^2}{\sqrt{1-x^2}}}{1-x^2}=\frac{\frac{1-x^2+x^2}{\sqrt{1-x^2}}}{1-x^2}=\frac{1}{(1-x^2)\sqrt{1-x^2}}=\frac{1}{(1-x^2)(1-x^2)^\frac{1}{2}}[/tex]
[tex].\center\boxed{=\frac{1}{(1-x^2)^\frac{3}{2}}}[/tex]
[tex].\center\boxed{=\frac{1}{(1-x^2)^\frac{3}{2}}}[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.