Answered

Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

The area of the shaded segment is 100cm^2. Calculate the value of r.

The Area Of The Shaded Segment Is 100cm2 Calculate The Value Of R class=

Sagot :

Hello, 

The formula for finding the area of a circular region is: [tex]A= \frac{ \alpha *r^{2} }{2} [/tex]

then:
[tex]A_{1} = \frac{80*r^{2} }{2} [/tex]

With the two radius it is formed an isosceles triangle, so, we must obtain its area, but first we obtain the height and the base.

[tex]cos(40)= \frac{h}{r} \\ \\ h= r*cos(40)\\ \\ \\ sen(40)= \frac{b}{r} \\ \\ b=r*sen(40)[/tex]

Now we can find its area:
[tex]A_{2}=2* \frac{b*h}{2} \\ \\ A_{2}= [r*sen(40)][r*cos(40)]\\ \\A_{2}= r^{2}*sen(40)*cos(40)[/tex]

The subtraction of the two areas is 100cm^2, then:

[tex]A_{1}-A_{2}=100cm^{2} \\ (40*r^{2})-(r^{2}*sen(40)*cos(40) )=100cm^{2} \\ 39.51r^{2}=100cm^{2} \\ r^{2}=2.53cm^{2} \\ r=1.59cm[/tex]

Answer: r= 1.59cm
Ok so we need to subtract the area of the triangle from the area of the segment and this will equal 100.
We know that the area of the segment is:
[tex] \frac{80}{360} * \pi r^{2} [/tex]
And that the area of the triangle is:
[tex] \frac{1}{2} r^{2} sin(80)[/tex]
Therefore:
[tex] \frac{80}{360} * \pi r^{2} - \frac{1}{2} r^{2} sin(80)=100[/tex]
We can simplify it through these steps:
[tex] \frac{80}{360} * \pi r^{2} - \frac{1}{2} r^{2} sin(80)=100[/tex]
[tex]4 \pi r^{2} - 9 r^{2} sin(80)=1800[/tex]
[tex] r^{2}(4 \pi -9sin(80))=1800 [/tex]
[tex] r^{2} = \frac{1800}{4 \pi -9sin(80)} [/tex]
[tex]r= \sqrt{\frac{1800}{4 \pi -9sin(80)} } [/tex]
Therefore r=22.04cm (4sf)
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.