Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Distance formula:
[tex]d= \sqrt{ (x_{2}-x_{1}) ^{2}+( y_{2} - y_{1} )^{2}}\\ d= \sqrt{ (3-(-1)) ^{2}+(1 - 4 )^{2}}\\ d= \sqrt{ (4) ^{2}+(-3)^{2}}\\ d=\sqrt{16+9}\\ d=\sqrt{25}\\ d=5[/tex]
5 units-4.5 units=0.5 units
LM is 0.5 units longer than LM.
[tex]d= \sqrt{ (x_{2}-x_{1}) ^{2}+( y_{2} - y_{1} )^{2}}\\ d= \sqrt{ (3-(-1)) ^{2}+(1 - 4 )^{2}}\\ d= \sqrt{ (4) ^{2}+(-3)^{2}}\\ d=\sqrt{16+9}\\ d=\sqrt{25}\\ d=5[/tex]
5 units-4.5 units=0.5 units
LM is 0.5 units longer than LM.
Answer:
Segment LM is 0.5 units longer than segment JK.
Step-by-step explanation:
We have been given that segment JK has a length of 4.5 units. If segment LM has end points of L (3,1) and M (-1,4).
We will find length of segment LM using distance formula.
[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Substitute given values:
[tex]D=\sqrt{(3-(-1))^2+(1-4)^2}[/tex]
[tex]D=\sqrt{(3+1)^2+(-3)^2}[/tex]
[tex]D=\sqrt{(4)^2+(-3)^2}[/tex]
[tex]D=\sqrt{16+9}[/tex]
[tex]D=\sqrt{25}[/tex]
[tex]D=5[/tex]
Therefore, the distance of segment LM is 5 units.
Now, we will find the difference between segment LM and JK as:
[tex]\text{Difference between LM and JK}=5-4.5[/tex]
[tex]\text{Difference between LM and JK}=0.5[/tex]
Therefore, segment LM is 0.5 units longer than segment JK.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.