Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

It takes the elevator in a skyscraper 4.5s to reach its cruising speed of 11m/s . A 70kg passenger gets aboard on the ground floor.
A- 
What is the passenger's weight before the elevator starts moving?
B-What is the passenger's weight while the elevator is speeding up?
C-What is the passenger's weight after the elevator reaches its cruising speed?

Sagot :

A and C are very simple. Since there is no acceleration in both cases, the weight of the passenger is just [tex]mg=(70kg)(9.8\frac{m}{s^2})=686 N[/tex] (about 690 N or 150 lbs with correct sig-figs). For B, we must first find the acceleration of the elevator. Since [tex]v=v_{0}+at [/tex], we can write that [tex]11\frac{m}{s}=0\frac{m}{s}+a(4.5s)[/tex]. Solving for a, we get that [tex]a\approx2.44\frac{m}{s^2}[/tex]. Plugging this into Newton's second law, we get that [tex]F=ma=(70kg)(2.44\frac{m}{s^2})\approx171 N[/tex]. When calculating the apparent weight, this gets added onto the 686 N from A and C, so the final apparent weight is about 857 N, or 860 N with the correct number of sig-figs.

tl;dr:
A - 690 N
B - 860 N
C - 690 N
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.