Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

It takes the elevator in a skyscraper 4.5s to reach its cruising speed of 11m/s . A 70kg passenger gets aboard on the ground floor.
A- 
What is the passenger's weight before the elevator starts moving?
B-What is the passenger's weight while the elevator is speeding up?
C-What is the passenger's weight after the elevator reaches its cruising speed?


Sagot :

A and C are very simple. Since there is no acceleration in both cases, the weight of the passenger is just [tex]mg=(70kg)(9.8\frac{m}{s^2})=686 N[/tex] (about 690 N or 150 lbs with correct sig-figs). For B, we must first find the acceleration of the elevator. Since [tex]v=v_{0}+at [/tex], we can write that [tex]11\frac{m}{s}=0\frac{m}{s}+a(4.5s)[/tex]. Solving for a, we get that [tex]a\approx2.44\frac{m}{s^2}[/tex]. Plugging this into Newton's second law, we get that [tex]F=ma=(70kg)(2.44\frac{m}{s^2})\approx171 N[/tex]. When calculating the apparent weight, this gets added onto the 686 N from A and C, so the final apparent weight is about 857 N, or 860 N with the correct number of sig-figs.

tl;dr:
A - 690 N
B - 860 N
C - 690 N