Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
[tex]a+b=28 \\\\\ a=2b+4 \\\\ 2b+4+b=28\\\\ 3b=28-4\\\\3b=24 \\\\ \boxed{b=\frac{24}{3}=8} \\\\a=2*8+4\\\\a=16+4 \\\\ \boxed{a=20}[/tex]
Answer:
Let x be the first group of students in a class and y be the second group of students in the class.
As per the statement:
As, the teacher separated her class of twenty-eight students in two groups.
⇒ x+y = 28 ......[1]
Also, one group has 4 more than twice as many as the other group.
⇒ x = 4 + 2y ......[2]
Now, substitute the equation [2] in [1]; we have
[tex]4+2y+y = 28[/tex]
Combine like terms;
4 + 3y = 28
Subtract 4 from both sides we get;
[tex]4+3y-4 = 28-4[/tex]
Simplify:
3y = 24
Divide by 3 to both sides we get;
[tex]\frac{3y}{3} = \frac{24}{3}[/tex]
Simplify:
y = 8
Now, substitute the value of y in equation [2] to solve for x;
[tex]x = 4 + 2(8) = 4 +16 = 20[/tex]
or
x = 20
therefore, the number of students in each group are 20 and 8.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.