Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
FIRST QUESTION
Given points are:
A(2, -4) and B(6, 2)
Now, Use the distance formula.
distance formula = [tex] \sqrt{ (x_{2}- x_{1})^{2} + ( y_{2} - y_{1} )^{2} }[/tex]
Now, plug the values into the formula, So,
distance = [tex] \sqrt{ (6- 2)^{2} + ( 2 - (-4))^{2} }[/tex]
= [tex] \sqrt{ (6- 2)^{2} + ( 2 +4))^{2} }[/tex]
= [tex] \sqrt{ (4)^{2} + ( 6))^{2} }[/tex]
= [tex] \sqrt{ 16+36} [/tex]
= [tex] \sqrt{52} [/tex]
= [tex]2 \sqrt{13} [/tex]
So, the length of AB is [tex]2 \sqrt{13} [/tex].
THIRD QUESTION
Two points given are:
A(3, -2) and B(1, 1)
Also given that B is the midpoint of AC.
Let, the co-ordinates of C be C(a, b).
Now, using midpoint formula,
Midpoint = [tex] (\frac{ x_{1}+ x_{2} }{2} , \frac{ y_{1}+ y_{2} }{2} )[/tex]
[tex](1, 1)=(\frac{ 3+ a }{2} , \frac{ -2+b }{2} )[/tex]
Now, equaling the ordered pair, we have,
[tex]1=\frac{ 3+ a }{2}[/tex] .............equation (1)
[tex]1=\frac{ -2+b }{2} [/tex] ................equation (2)
Now, taking equation (1)
[tex]1=\frac{ 3+ a }{2}[/tex]
[tex]1*2=3+a[/tex]
[tex]2-3=a[/tex]
[tex]a=-1[/tex]
Now, taking equation (2)
[tex]1=\frac{ -2+b }{2}[/tex]
[tex]1*2=-2+b[/tex]
[tex]2+2=b[/tex]
[tex]b=4[/tex]
So, the co ordinates of C are (a, b) which is (-1 , 4)
SECOND QUESTION:
Given equations are:
2x + 3y = 14.....................equation (1)
-4x + 2y = 4 .....................equation (2)
Taking equation (2)
-4x + 2y = 4
2y = 4 + 4x
y = (4 + 4x) / 2
y = 2 + 2x .......................equation (3)
Now, Taking equation (1)
2x + 3y = 14
Substituting the value of y from equation (3), we get,
2x + 3(2 + 2x) = 14
2x + 6 + 6x = 14
8x = 14 - 6
x = (14 - 6) / 8
x = 1
Taking equation (3)
y = 2 + 2x
Now, substituting the value of x in equation (3), we get,
y= 2 + 2 (1)
y = 2 + 2
y = 4
So, x=1 and y=4
Given points are:
A(2, -4) and B(6, 2)
Now, Use the distance formula.
distance formula = [tex] \sqrt{ (x_{2}- x_{1})^{2} + ( y_{2} - y_{1} )^{2} }[/tex]
Now, plug the values into the formula, So,
distance = [tex] \sqrt{ (6- 2)^{2} + ( 2 - (-4))^{2} }[/tex]
= [tex] \sqrt{ (6- 2)^{2} + ( 2 +4))^{2} }[/tex]
= [tex] \sqrt{ (4)^{2} + ( 6))^{2} }[/tex]
= [tex] \sqrt{ 16+36} [/tex]
= [tex] \sqrt{52} [/tex]
= [tex]2 \sqrt{13} [/tex]
So, the length of AB is [tex]2 \sqrt{13} [/tex].
THIRD QUESTION
Two points given are:
A(3, -2) and B(1, 1)
Also given that B is the midpoint of AC.
Let, the co-ordinates of C be C(a, b).
Now, using midpoint formula,
Midpoint = [tex] (\frac{ x_{1}+ x_{2} }{2} , \frac{ y_{1}+ y_{2} }{2} )[/tex]
[tex](1, 1)=(\frac{ 3+ a }{2} , \frac{ -2+b }{2} )[/tex]
Now, equaling the ordered pair, we have,
[tex]1=\frac{ 3+ a }{2}[/tex] .............equation (1)
[tex]1=\frac{ -2+b }{2} [/tex] ................equation (2)
Now, taking equation (1)
[tex]1=\frac{ 3+ a }{2}[/tex]
[tex]1*2=3+a[/tex]
[tex]2-3=a[/tex]
[tex]a=-1[/tex]
Now, taking equation (2)
[tex]1=\frac{ -2+b }{2}[/tex]
[tex]1*2=-2+b[/tex]
[tex]2+2=b[/tex]
[tex]b=4[/tex]
So, the co ordinates of C are (a, b) which is (-1 , 4)
SECOND QUESTION:
Given equations are:
2x + 3y = 14.....................equation (1)
-4x + 2y = 4 .....................equation (2)
Taking equation (2)
-4x + 2y = 4
2y = 4 + 4x
y = (4 + 4x) / 2
y = 2 + 2x .......................equation (3)
Now, Taking equation (1)
2x + 3y = 14
Substituting the value of y from equation (3), we get,
2x + 3(2 + 2x) = 14
2x + 6 + 6x = 14
8x = 14 - 6
x = (14 - 6) / 8
x = 1
Taking equation (3)
y = 2 + 2x
Now, substituting the value of x in equation (3), we get,
y= 2 + 2 (1)
y = 2 + 2
y = 4
So, x=1 and y=4
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.