Answered

Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

The sum of a 3 digit number and a 1 digit number is 217. The product of the numbers is 642. If one number is between 200 and 225, what are the numbers?

Sagot :

Let, the numbers be "x" and "y". Consider "x" as the triple digit number.
Now, according to the question,
x + y = 217..........................equation (1)

x * y = 642............................equation (2)

Now,
Taking equation (2),
x * y = 642
y = 642 / x..................................equation (3)

Now, Taking equation (1),
[tex]x+y=217[/tex]

Substituting the value of y from equation (3), we get,

[tex]x+ \frac{642}{x} =217[/tex]

[tex]\frac{x *x+642}{x} =217[/tex]

[tex] x^{2} +642 =217*x[/tex]

[tex] x^{2} +642 =217x[/tex]

[tex] x^{2} +642-217x =0[/tex]

[tex] x^{2} -217x+642 =0[/tex]

[tex] x^{2} -3x-214x+642 =0[/tex]

[tex]x(x-3)-214(x-3)=0[/tex]

[tex](x-3)(x-214)=0[/tex]

Using zero product property,
EITHER,
           x - 3 = 0
                x = 3
OR,
          x - 214 = 0
                  x  = 214
Since, "x" is the triple digit number, x = 214.
Now,
Taking equation (2),
x * y = 642
Substituting the value of "x" in the equation, we get,
(214) * y = 642
y = 642 / 214
y = 3

So, the numbers are 214 and 3.