Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

for a diamond problem what two numbers' sums equal 31 and their product is 234?

Sagot :

[tex]a+b=31=> \boxed{a=b-31} \\ab=234 \\\\ \\\\ b*(b-31)=234 \\\\ b^2-31b-234=0 \\ a=1 \\ b=-31 \\ c=-234 \\\\ \Delta= (-31)^2-4*1*(-234)= 961-936=25 \\\\ x_1;x_2=\frac{-(-31)+/-\sqrt{25}}{2*1} =\frac{31+/-5}{2} \\\\ x_1=\frac{31+5}{2}=\frac{36}{2}\to\boxed{18} \\\\ x_2=\frac{31-5}{2}=\frac{26}{2}\to\boxed{13} \\\\ (x-18)(x-13)=0 \\\\ 1)x-18=0 \ => \boxed{x=18} \\\\ 2)x-13=0 \ => \boxed{x=13} [/tex]

Let

x-------> the first number

y------> the second number


we know that

[tex] x+y=31 [/tex]

[tex] x=31-y [/tex]

equation [tex] 1 [/tex]


[tex] x*y=234 [/tex]

equation [tex] 2 [/tex]


substitute equation 1 in equation 2

[tex] (31-y)*y=234\\ 31y-y^{2} =234\\ -y^{2} +31y-234=0 [/tex]



using a graph tool-----> to resolve the second order equation

see the attached figure


the solution is

[tex] 13 and 18 [/tex]

View image calculista