Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
From the factor theorem that says, "The polynomial P(x) has x-r as a factor if and only if r is a root of the equation P(x) = 0." So if you plugged -1 into the x's in the equation and get 0 back then, x+1 is a factor. Let's do it.
[tex]( -1)^{3} -57(-1)-56=-1+57-56=0[/tex]
It works. When you plugged -1 into x, you got 0 back and that's what the factor theorem says.
Now let's test it with synthetic division. If we divide x+1 into the original equation and get a remainder of 0, then we should be good. I'll write it up on Paint and upload it.
As you can see, our remainder is 0 and our quotient is [tex] x^{2} -x-56[/tex]. This is the Factor the Polynomial part that you wanted. We can factor this into (x-8)(x+7). So our 3 roots of the equation are (x+1)(x-8)(x+7)
Hope this helps and i'm so sorry for the long reply. I forgot to put 0x^2 when I was doing synthetic division. :/ and also sorry for the unclear paint image. you can zoom in if you want. it's nothing really important it just shows me doing the synthetic division part where i divide x+1 into the original equation.
[tex]( -1)^{3} -57(-1)-56=-1+57-56=0[/tex]
It works. When you plugged -1 into x, you got 0 back and that's what the factor theorem says.
Now let's test it with synthetic division. If we divide x+1 into the original equation and get a remainder of 0, then we should be good. I'll write it up on Paint and upload it.
As you can see, our remainder is 0 and our quotient is [tex] x^{2} -x-56[/tex]. This is the Factor the Polynomial part that you wanted. We can factor this into (x-8)(x+7). So our 3 roots of the equation are (x+1)(x-8)(x+7)
Hope this helps and i'm so sorry for the long reply. I forgot to put 0x^2 when I was doing synthetic division. :/ and also sorry for the unclear paint image. you can zoom in if you want. it's nothing really important it just shows me doing the synthetic division part where i divide x+1 into the original equation.
x^3 - 57x - 56=0⇒ x(x^2-57)= 56
Verify if x= - 1 is a solution of this equation.
(-1)* [(-1)^2 - 57]=56
(-1)[1 - 57] = 56
(-1)*(-56) = 56
56 =2*28 = (-2)*(-28) = 4*14 = (- 4)*(-14) = 8*7= (-8)*(-7)
x=8 ⇒ 8*(64-57)=56 ok⇒ x=8 is a solution
x= -7 ⇒ (-7)*(49-57)=56 ok ⇒ x= - 7 is a solution
the smallest x= -7
x= - 1
the largest x= 8
Verify if x= - 1 is a solution of this equation.
(-1)* [(-1)^2 - 57]=56
(-1)[1 - 57] = 56
(-1)*(-56) = 56
56 =2*28 = (-2)*(-28) = 4*14 = (- 4)*(-14) = 8*7= (-8)*(-7)
x=8 ⇒ 8*(64-57)=56 ok⇒ x=8 is a solution
x= -7 ⇒ (-7)*(49-57)=56 ok ⇒ x= - 7 is a solution
the smallest x= -7
x= - 1
the largest x= 8
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.