At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

A boat is rowed at 8 km/hr directly across a river that flows at 6 km/hr. What is the resultant speed?

Sagot :

8 km/h +6km/h =14 km/h assuming that the boat is going the same direction as the current. 

The Resultant Speed of boat rowed at 8km/hr directly across a river that flows at 6km/hr is 10km/hr

Given the data in the question;

Velocity of boat; [tex]V_m = 8km/hr[/tex]

Velocity of the flowing river; [tex]V_r = 6km/hr[/tex]

Resultant Velocity; [tex]V = ?[/tex]

Now, as illustrated in the diagram below, a right angled triangle is formed.

Now, to get the V, which is the resultant velocity or speed, we make use of the Pythagorean theorem:

[tex]c^2 = a^2 + b^2[/tex]

In our case,

[tex]V^2 = V_r^2 + V_m^2[/tex]  

We find the square root of both sides

[tex]V = \sqrt{V_r^2 + V_m^2}[/tex]

 

Now, we substitute in our given values

[tex]V = \sqrt{(6km/hr)^2 + (8km/hr)^2}\\\\V = \sqrt{ (36km^2/hr^2) + ( 64 km^2/hr^2)\\[/tex]

[tex]V = \sqrt{100 km^2/hr^2[/tex]

[tex]V = 10km/hr[/tex]

Therefore, The Resultant Speed of boat rowed at 8km/hr directly across a river that flows at 6km/hr is 10km/hr

Learn more; https://brainly.com/question/11737468

View image nuhulawal20
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.