Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
1. So we have the system of
equation. (4, -3)
let’s create another system of equation.
Let a = 4
and Let b = -3
First equation
=> Let’s pick any numbers to be used. Let’s have number 5
=> 5a + 5b
=> 5 (4) + 5 (-3)
=> 20 + (-15)
negative and positive is equals to negative
=> 20 – 15
=> 5 (this the first value of our equation, let this be the value of X)
Second
=> Pick another number, Let’s have 6
=> 6a + 6b
=> 6 (4) + 6 (-3)
=> 24 + (-18)
=> 24 – 18
=> 6 (this is the value of our second equation, let this value be Y)
Now, we have (A, B) = (4, -3) and (X, Y) = (5,6)
let’s create another system of equation.
Let a = 4
and Let b = -3
First equation
=> Let’s pick any numbers to be used. Let’s have number 5
=> 5a + 5b
=> 5 (4) + 5 (-3)
=> 20 + (-15)
negative and positive is equals to negative
=> 20 – 15
=> 5 (this the first value of our equation, let this be the value of X)
Second
=> Pick another number, Let’s have 6
=> 6a + 6b
=> 6 (4) + 6 (-3)
=> 24 + (-18)
=> 24 – 18
=> 6 (this is the value of our second equation, let this value be Y)
Now, we have (A, B) = (4, -3) and (X, Y) = (5,6)
Answer:
A linear equation can be written in several forms. "Standard Form" is #ax+by=c# where #a#, #b# and #c# are constants (numbers).
We want to make two equations that
(i) have this form,
(ii) do not have all the same solutions (the equations are not equivalent), and
(iii) #(4, -3)# is a solution to both.
#ax+by=c#. We want #a#, #b# and #c# so that
#a(4)+b(-3)=c# (This will make (i) and (iii) true.)
Step-by-step explanation:
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.