Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Using constant acceleration (acc'n) equations: i=horizontal componant, j=vertical
(displacement) S={Uit+0.5ait²} + {Ujt+0.5ajt²}
(Initial Velocity) U={21.9*cos(36.3)i} + {21.9*sin(36.3)j}
(Final Velocity) V={Ui+ait} + {Uj+ajt)
(Acc'n) a={0i} + {-9.81j}
(time) t=t
When the water is at it's highest point, Vj=0, since no vertical motion is occurring
therefore:
21.9*sin(36.3) + -9.81 = 0
therefore, when the water is at it's highest point, t=1.32 (3 sig figures)
To find how far away you need to be, you need to work out how far the water would travel in this time, using Si
Therefore:
when t=1.32.....
Si= {21.9*sin(36.3)}*(1.32....) + 0.5*9.81*1.32.... = 25.66
(displacement) S={Uit+0.5ait²} + {Ujt+0.5ajt²}
(Initial Velocity) U={21.9*cos(36.3)i} + {21.9*sin(36.3)j}
(Final Velocity) V={Ui+ait} + {Uj+ajt)
(Acc'n) a={0i} + {-9.81j}
(time) t=t
When the water is at it's highest point, Vj=0, since no vertical motion is occurring
therefore:
21.9*sin(36.3) + -9.81 = 0
therefore, when the water is at it's highest point, t=1.32 (3 sig figures)
To find how far away you need to be, you need to work out how far the water would travel in this time, using Si
Therefore:
when t=1.32.....
Si= {21.9*sin(36.3)}*(1.32....) + 0.5*9.81*1.32.... = 25.66
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.