At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
you can solve this in two easy ways. First off we'll do it mathematically, using what's called the Pythagorean Theorem. This is as follows (only for right triangles!): a^2+b^2=c^2
in this equation, a and b are the two sides, or legs, of the triangle that form a right (90 degree) angle, and c is the other, diagonal side, aka the hypotenuse.
For your question, a and b (the two sides of the triangle) are 300 and 400m. using the theorem i put above,
300^2+400^2=c^2 (you want to find c, as that is how far the helicpoter is from the start)
250000=c^2
c=500m
and there's your answer
the other, much easier way is to know the fact that one example of a right triangle, aka a "Pythagorean triple", has sides of 3 and 4 and a hypotenuse of 5. Knowing that, one could solve your question in a matter of seconds.
so there you go. 500m
in this equation, a and b are the two sides, or legs, of the triangle that form a right (90 degree) angle, and c is the other, diagonal side, aka the hypotenuse.
For your question, a and b (the two sides of the triangle) are 300 and 400m. using the theorem i put above,
300^2+400^2=c^2 (you want to find c, as that is how far the helicpoter is from the start)
250000=c^2
c=500m
and there's your answer
the other, much easier way is to know the fact that one example of a right triangle, aka a "Pythagorean triple", has sides of 3 and 4 and a hypotenuse of 5. Knowing that, one could solve your question in a matter of seconds.
so there you go. 500m
I'm just guessing here, but I think it can be solved using the Pythagorean Theorem. So, we know a and b, so 300^2 (a) + 400^2 (b) = c^2. So, 90000 + 160000 is 250000. 250000 squared is 500. So, I believe the answer is 500m west of the original starting point.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.