Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The word 'LEADING' has 7 different letters. When the vowels EAI are always together, they can be supposed to form one letter. Then, we have to arrange the letters LNDG (EAI). Now, 5 (4 + 1 = 5) letters can be arranged in 5! = 120 ways. The vowels (EAI) can be arranged among themselves in 3! = 6 ways. Required number of ways = (120 x 6) = 720. The word 'LEADING' can be arranged 720 different ways in such a way that vowels always come together.
We have 3 vowels. The number of ways we can arrange them so they are next to each other is 3!=6. Now we have to find the number of ways we can arrange these 3 vowels with the remaining letters. As the vowels have to come together, we can treat them as one letter. Therefore we have 5 letter altogether. The number of ways we can arrange the vowels with the remaining letters is 5!=120.
6*120=720
6*120=720
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.