Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

If x and y are negative integers and x – y = 1,
what is the least possible value for xy?


Sagot :

x=y+1
Least possible value for y(y+1)? Well, it appears for y halfway between the roots (you know what a parabola is, don't you?). That y is -0.5, so let's calculate -0.5*0.5, which is -0.25.
The least possible value is [tex]-\frac{1}4[/tex]
Well, not really :)) The two values must be both negative, so we can't take one of them to be 0.5! As we lower the values, however, the product grows, reaching 0 when x=0 and y=-1, and further increasing as x and y lower. Thus, we would actually take x=0 and y=-1.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.