Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
[tex]x-3y-27=0\\
y^2=4x\\\\
x-3y-27=0\\
x=\frac{y^2}{4}\\\\
\frac{y^2}{4}-3y-27=0\\
y^2-12y-108=0\\
y^2-12y+36-144=0\\
(y-6)^2=144\\
y-6=-12 \vee y-6=12\\
y=-6 \vee y=18\\\\
x=\frac{(-6)^2}{4} \vee x=\frac{18^2}{4}\\
x=\frac{36}{4} \vee x=\frac{324}{4}\\
x=9 \vee x=81\\\\
\boxed{(9,-6),(81,18)}
[/tex]
First, rearrange the first equation:
3y = x - 27
y = x/3 - 9
Square this equation to make y^2 the subject:
y^2 = (x/3 - 9)^2 = (x/3 - 9)(x/3 - 9) = (x^2)/9 - 3x - 3x + 81 = (x^2)/9 - 6x + 81
Now you can substitute this for y^2 in the second equation, then rearrange into the form ax^2 + bx + c = 0:
(x^2)/9 - 6x + 81 = 4x
(x^2)/9 - 10x + 81 = 0
x^2 - 90x + 729 = 0
Factorise the equation, then equate to zero and zolve:
(x - 9)(x - 81) = 0
x - 9 = 0 --> x = 9
x - 81 = 0 --> x = 81
Using these x values, find the corresponding y values:
y^2 = 4x ∴ y = √4x
When x = 9, y = √(4*9) = √36 = ±6
When x = 81, y = √(4*81) = √324 = ±18
Now we need to test whether each y co-ordinate is positive or negative:
When x = 9 and y = 6: x - 3y - 27 = 9 - 18 - 27 ≠ 0
When x = 9 and y = -6: x - 3y - 27 = 9 + 18 - 27 = 0
When x = 81 and y = 18: x - 3y - 27 = 81 - 54 - 27 = 0
When x = 81 and y = -18: x - 3y - 27 = 81 + 54 - 27 ≠ 0
Therefore, the co-ordinates of the points of intersection are (9, -6) and (81, 18)
3y = x - 27
y = x/3 - 9
Square this equation to make y^2 the subject:
y^2 = (x/3 - 9)^2 = (x/3 - 9)(x/3 - 9) = (x^2)/9 - 3x - 3x + 81 = (x^2)/9 - 6x + 81
Now you can substitute this for y^2 in the second equation, then rearrange into the form ax^2 + bx + c = 0:
(x^2)/9 - 6x + 81 = 4x
(x^2)/9 - 10x + 81 = 0
x^2 - 90x + 729 = 0
Factorise the equation, then equate to zero and zolve:
(x - 9)(x - 81) = 0
x - 9 = 0 --> x = 9
x - 81 = 0 --> x = 81
Using these x values, find the corresponding y values:
y^2 = 4x ∴ y = √4x
When x = 9, y = √(4*9) = √36 = ±6
When x = 81, y = √(4*81) = √324 = ±18
Now we need to test whether each y co-ordinate is positive or negative:
When x = 9 and y = 6: x - 3y - 27 = 9 - 18 - 27 ≠ 0
When x = 9 and y = -6: x - 3y - 27 = 9 + 18 - 27 = 0
When x = 81 and y = 18: x - 3y - 27 = 81 - 54 - 27 = 0
When x = 81 and y = -18: x - 3y - 27 = 81 + 54 - 27 ≠ 0
Therefore, the co-ordinates of the points of intersection are (9, -6) and (81, 18)
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.