Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
[tex]x-3y-27=0\\
y^2=4x\\\\
x-3y-27=0\\
x=\frac{y^2}{4}\\\\
\frac{y^2}{4}-3y-27=0\\
y^2-12y-108=0\\
y^2-12y+36-144=0\\
(y-6)^2=144\\
y-6=-12 \vee y-6=12\\
y=-6 \vee y=18\\\\
x=\frac{(-6)^2}{4} \vee x=\frac{18^2}{4}\\
x=\frac{36}{4} \vee x=\frac{324}{4}\\
x=9 \vee x=81\\\\
\boxed{(9,-6),(81,18)}
[/tex]
First, rearrange the first equation:
3y = x - 27
y = x/3 - 9
Square this equation to make y^2 the subject:
y^2 = (x/3 - 9)^2 = (x/3 - 9)(x/3 - 9) = (x^2)/9 - 3x - 3x + 81 = (x^2)/9 - 6x + 81
Now you can substitute this for y^2 in the second equation, then rearrange into the form ax^2 + bx + c = 0:
(x^2)/9 - 6x + 81 = 4x
(x^2)/9 - 10x + 81 = 0
x^2 - 90x + 729 = 0
Factorise the equation, then equate to zero and zolve:
(x - 9)(x - 81) = 0
x - 9 = 0 --> x = 9
x - 81 = 0 --> x = 81
Using these x values, find the corresponding y values:
y^2 = 4x ∴ y = √4x
When x = 9, y = √(4*9) = √36 = ±6
When x = 81, y = √(4*81) = √324 = ±18
Now we need to test whether each y co-ordinate is positive or negative:
When x = 9 and y = 6: x - 3y - 27 = 9 - 18 - 27 ≠ 0
When x = 9 and y = -6: x - 3y - 27 = 9 + 18 - 27 = 0
When x = 81 and y = 18: x - 3y - 27 = 81 - 54 - 27 = 0
When x = 81 and y = -18: x - 3y - 27 = 81 + 54 - 27 ≠ 0
Therefore, the co-ordinates of the points of intersection are (9, -6) and (81, 18)
3y = x - 27
y = x/3 - 9
Square this equation to make y^2 the subject:
y^2 = (x/3 - 9)^2 = (x/3 - 9)(x/3 - 9) = (x^2)/9 - 3x - 3x + 81 = (x^2)/9 - 6x + 81
Now you can substitute this for y^2 in the second equation, then rearrange into the form ax^2 + bx + c = 0:
(x^2)/9 - 6x + 81 = 4x
(x^2)/9 - 10x + 81 = 0
x^2 - 90x + 729 = 0
Factorise the equation, then equate to zero and zolve:
(x - 9)(x - 81) = 0
x - 9 = 0 --> x = 9
x - 81 = 0 --> x = 81
Using these x values, find the corresponding y values:
y^2 = 4x ∴ y = √4x
When x = 9, y = √(4*9) = √36 = ±6
When x = 81, y = √(4*81) = √324 = ±18
Now we need to test whether each y co-ordinate is positive or negative:
When x = 9 and y = 6: x - 3y - 27 = 9 - 18 - 27 ≠ 0
When x = 9 and y = -6: x - 3y - 27 = 9 + 18 - 27 = 0
When x = 81 and y = 18: x - 3y - 27 = 81 - 54 - 27 = 0
When x = 81 and y = -18: x - 3y - 27 = 81 + 54 - 27 ≠ 0
Therefore, the co-ordinates of the points of intersection are (9, -6) and (81, 18)
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.