Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
[tex]f(x)=ax^2+bx+c\\\\\Delta=b^2-4ac\\\\if\ \Delta < 0-no\ zeros\\if\ \Delta=0-one\ zero\\if\ \Delta > 0-two\ zeros[/tex]
[tex]f(x)=x^2-kx+5=0\\\\a=1;\ b=-k;\ c=5\\\\\Delta=(-k)^2-4\cdot1\cdot5=k^2-20\\\\one\ zero\ if\ \Delta=0\\\\therefore\\k^2-20=0\ \ \ \ |add\ 20\ to\ both\ sides\\\\k^2=20\\\\k=\pm\sqrt{20}\\\\k=\pm\sqrt{4\cdot5}\\\\\boxed{k=-2\sqrt5\ or\ k=2\sqrt5}[/tex]
[tex]f(x)=x^2-kx+5=0\\\\a=1;\ b=-k;\ c=5\\\\\Delta=(-k)^2-4\cdot1\cdot5=k^2-20\\\\one\ zero\ if\ \Delta=0\\\\therefore\\k^2-20=0\ \ \ \ |add\ 20\ to\ both\ sides\\\\k^2=20\\\\k=\pm\sqrt{20}\\\\k=\pm\sqrt{4\cdot5}\\\\\boxed{k=-2\sqrt5\ or\ k=2\sqrt5}[/tex]
I like this question. When we factorise this question the brackets have to be identical.
5 has to be square rooted to become √5. From, FOIL we know that the last digit is times by the other last digit to find the 5, as our brackets are identical this number is the same. The square root of 5.
This number is doubled in identical brackets to find the middle number. so it is 2√5. As there is a minus number there the brackets are: (x-√5)(x-√5). Multiplying this out gives us: x²-2√5 x+5. k=2√5 (or -2√5, depending on if the minus is counted or not)
5 has to be square rooted to become √5. From, FOIL we know that the last digit is times by the other last digit to find the 5, as our brackets are identical this number is the same. The square root of 5.
This number is doubled in identical brackets to find the middle number. so it is 2√5. As there is a minus number there the brackets are: (x-√5)(x-√5). Multiplying this out gives us: x²-2√5 x+5. k=2√5 (or -2√5, depending on if the minus is counted or not)
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.