Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
[tex]f(x)=ax^2+bx+c\\\\\Delta=b^2-4ac\\\\if\ \Delta < 0-no\ zeros\\if\ \Delta=0-one\ zero\\if\ \Delta > 0-two\ zeros[/tex]
[tex]f(x)=x^2-kx+5=0\\\\a=1;\ b=-k;\ c=5\\\\\Delta=(-k)^2-4\cdot1\cdot5=k^2-20\\\\one\ zero\ if\ \Delta=0\\\\therefore\\k^2-20=0\ \ \ \ |add\ 20\ to\ both\ sides\\\\k^2=20\\\\k=\pm\sqrt{20}\\\\k=\pm\sqrt{4\cdot5}\\\\\boxed{k=-2\sqrt5\ or\ k=2\sqrt5}[/tex]
[tex]f(x)=x^2-kx+5=0\\\\a=1;\ b=-k;\ c=5\\\\\Delta=(-k)^2-4\cdot1\cdot5=k^2-20\\\\one\ zero\ if\ \Delta=0\\\\therefore\\k^2-20=0\ \ \ \ |add\ 20\ to\ both\ sides\\\\k^2=20\\\\k=\pm\sqrt{20}\\\\k=\pm\sqrt{4\cdot5}\\\\\boxed{k=-2\sqrt5\ or\ k=2\sqrt5}[/tex]
I like this question. When we factorise this question the brackets have to be identical.
5 has to be square rooted to become √5. From, FOIL we know that the last digit is times by the other last digit to find the 5, as our brackets are identical this number is the same. The square root of 5.
This number is doubled in identical brackets to find the middle number. so it is 2√5. As there is a minus number there the brackets are: (x-√5)(x-√5). Multiplying this out gives us: x²-2√5 x+5. k=2√5 (or -2√5, depending on if the minus is counted or not)
5 has to be square rooted to become √5. From, FOIL we know that the last digit is times by the other last digit to find the 5, as our brackets are identical this number is the same. The square root of 5.
This number is doubled in identical brackets to find the middle number. so it is 2√5. As there is a minus number there the brackets are: (x-√5)(x-√5). Multiplying this out gives us: x²-2√5 x+5. k=2√5 (or -2√5, depending on if the minus is counted or not)
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.