Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Hi elsmith,
w is the complex conjugate of z (and vice versa), and we are asked to prove that w^2 is equal to the complex conjugate of z^2.
If z = a + bi and w = c + di, the complex conjugate of z is a - bi (that's what complex conjugate is, same real part, the negative of the imaginary part).
Then c = a and d = -b. w = a + -bi.
Square z. cc(z) I define to mean the complex conjugate of z. cc(z^2) = cc(a + bi)^2
= cc(a + bi)(a + bi) Now, use FOIL.
= cc(a^2 + abi + abi + (b^2)(i^2)) I squared is -1, so the last term is the same as -b^2.
= cc(a^2 - b^2 + 2abi)
= a^2 - b^2 - 2abi
Now, square w. w^2 = (a + -bi)^2
= (a + -bi)(a + -bi)
= a^2 - abi - abi + ((-b)^2)(i^2)
= a^2 - b^2 - 2abi.
So, z^2 and w^2 are indeed equal, proving the claim.
If you have any further questions, feel free to message me!
Sincerely, taeuknam.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.