Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
This is a Doppler effect. Generally, if you move to a frequency source, you would detect an increase in frequency and when you move away from a source you would detect a decrease.
For this question, before you pass them, you are actually approaching them, so you would hear a higher frequency than the constant 300 Hz they are playing at.
Using the condensed formula:
f ' = ((v + vd)/(v + vs)) * f
Where: vd = Velocity of the detector.
vs = Velocity of the frequency source.
v = Velocity of sound in air.
f ' = Apparent frequency.
f = Frequency of source.
v = 343 m/s, vd = detector = 27.8 m/s, vs = velocity of the source =0. (the flautists are not moving).
f = 300 Hz.
There would be an overall increase in frequency, so we maintain a plus at the numerator and a minus at the denominator.
f ' = ((v + vd)/(v - vs)) * f
f ' = ((343+ 27.8)/(343 - 0)) * 300
= (370.8/343)* 300 = 324.3
Therefore frequency before passing them = 324.3 Hz.
Cheers.
For this question, before you pass them, you are actually approaching them, so you would hear a higher frequency than the constant 300 Hz they are playing at.
Using the condensed formula:
f ' = ((v + vd)/(v + vs)) * f
Where: vd = Velocity of the detector.
vs = Velocity of the frequency source.
v = Velocity of sound in air.
f ' = Apparent frequency.
f = Frequency of source.
v = 343 m/s, vd = detector = 27.8 m/s, vs = velocity of the source =0. (the flautists are not moving).
f = 300 Hz.
There would be an overall increase in frequency, so we maintain a plus at the numerator and a minus at the denominator.
f ' = ((v + vd)/(v - vs)) * f
f ' = ((343+ 27.8)/(343 - 0)) * 300
= (370.8/343)* 300 = 324.3
Therefore frequency before passing them = 324.3 Hz.
Cheers.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.