Answered

Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

  After giving an intense performance, a confused and disoriented flautist has wandered onto the motorway! They are playing a constant 300 Hz tone on their flute and are essentially stationary. If you are driving along the motorway at 100 km h−1 (27.8 m s−1 ), what is the frequency you hear from the flautist’s instrument before you pass them? (cair= 343 m s−1 .)


Sagot :

This is a Doppler effect. Generally, if you move to a frequency source, you would detect an increase in frequency and when you move away from a source you would detect a decrease.

For this question, before you pass them, you are actually approaching them, so you would hear a higher frequency than the constant 300 Hz they are playing at.

Using the condensed formula:

 f '   =   ((v + vd)/(v + vs)) * f

Where:  vd = Velocity of the detector.
              vs = Velocity of the frequency source.
              v   =  Velocity of sound in air.
              f '  =  Apparent frequency.
              f    =  Frequency of source.

v = 343 m/s,  vd = detector = 27.8 m/s,  vs = velocity of the source =0. (the flautists are not moving).
f = 300 Hz. 

There would be an overall increase in frequency, so we maintain a plus at the numerator and a minus at the denominator.

 f '   =   ((v + vd)/(v - vs)) * f

f '   =   ((343+ 27.8)/(343 - 0)) * 300
      =   (370.8/343)* 300 =  324.3

Therefore frequency before passing them = 324.3 Hz.

Cheers.