Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let
x--------> the number of blue beads
y--------> the number of red beads
we know that
[tex] x+y=49 [/tex]
[tex] x=49-y [/tex] -------> equation [tex] 1 [/tex]
[tex] x=6y [/tex] ------> equation [tex] 2 [/tex]
equate equation [tex] 1 [/tex] and equation [tex] 2 [/tex]
[tex] 49-y=6y\\ 6y+y=49\\ 7y=49\\\\ y=\frac{49}{7} \\ \\ y=7 [/tex]
find the value of x
[tex] x=6*7\\ x=42 [/tex]
therefore
the answer is
Ivan has [tex] 42 [/tex] [tex] blue beads [/tex]
The total number of blue beads with Ivan is [tex]\boxed{\bf 42}[/tex].
Further explanation:
It is given that Ivan has [tex]6[/tex] times as many blue beads as red beads.
The total number of beads are [tex]49[/tex].
Calculation:
Assume the beads of red color are denoted by [tex]R[/tex] and the beads of blue color are denoted by [tex]B[/tex].
Now, given that there are total [tex]49[/tex] beads and this can be written in the form of an equation as follows:
[tex]\boxed{R+B=49}[/tex] ......(1)
Also, given that Ivan has [tex]6[/tex] times as many blue beads as red beads and this can written as follows:
[tex]\boxed{6R=B}[/tex] ......(2)
Substitute the value [tex]6R=B[/tex] in equation (1), we get
[tex]\begin{aligned}R+6R&=49\\7R&=49\\R&=\dfrac{49}{7}\\R&=7\end{aligned}[/tex]
Therefore, Ivan has [tex]7[/tex] red beads.
Substitute [tex]R=7[/tex] in equation (1).
[tex]\begin{aligned}B&=6\cdot 7\\&=42\end{aligned}[/tex]
This implies that number of blue beads are [tex]42[/tex].
Thus, the total number of blue beads with Ivan is [tex]\boxed{\bf 42}[/tex].
Learn more
1. Problem on the equation of the circle https://brainly.com/question/1952668
2. Problem on the center and radius of an equation https://brainly.com/question/9510228
3. Problem on the general form of the equation of the circle https://brainly.com/question/1506955
Answer details:
Grade: Middle school
Subject: Mathematics
Chapter: Linear equations in two variables
Keywords: Linear equations in one variable, linear equations in two variables, substitution, elimination, function, sets, real numbers, ordinates, abscissa, interval.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.