At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
16x^2 + 25y^2 + 160x - 200y + 400 = 0 Rearrange and regroup.
(16x^2 + 160x) + (25y^2 - 200y ) = 0-400. Group the xs together and the ys together.
16(X^2 + 10x) + 25(y^2-8y) = -400. Factorising.
We are going to use completing the square method.
Coefficient of x in the first expression = 10.
Half of it = 1/2 * 10 = 5. (Note this value)
Square it = 5^2 = 25. (Note this value)
Coefficient of y in the second expression = -8.
Half of it = 1/2 * -8 = -4. (Note this value)
Square it = (-4)^2 = 16. (Note this value)
We are going to carry out a manipulation of completing the square with the values
25 and 16. By adding and substracting it.
16(X^2 + 10x) + 25(y^2-8y) = -400
16(X^2 + 10x + 25 -25) + 25(y^2-8y + 16 -16) = -400
Note that +25 - 25 = 0. +16 -16 = 0. So the equation is not altered.
16(X^2 + 10x + 25) -16(25) + 25(y^2-8y + 16) -25(16) = -400
16(X^2 + 10x + 25) + 25(y^2-8y + 16) = -400 +16(25) + 25(16) Transferring the terms -16(25) and -25(16)
to other side of equation. And 16*25 = 400
16(X^2 + 10x + 25) + 25(y^2-8y + 16) = 25(16)
16(X^2 + 10x + 25) + 25(y^2-8y + 16) = 400
We now complete the square by using the value when coefficient was halved.
16(x-5)^2 + 25(y-4)^2 = 400
Divide both sides of the equation by 400
(16(x-5)^2)/400 + (25(y-4)^2)/400 = 400/400 Note also that, 16*25 = 400.
((x-5)^2)/25 + ((y-4)^2)/16 = 1
((x-5)^2)/(5^2) + ((y-4)^2)/(4^2) = 1
Comparing to the general format of an ellipse.
((x-h)^2)/(a^2) + ((y-k)^2)/(b^2) = 1
Coordinates of the center = (h,k).
Comparing with above (x-5) = (x - h) , h = 5.
Comparing with above (y-k) = (y - k) , k = 4.
Therefore center = (h,k) = (5,4).
Sorry the answer came a little late. Cheers.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.