At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
4y^2 - 8y + 25x^2 +150x - 171 = 0
4y^2 - 8y + 25x^2 +150x - 171 = 0 Rearrange and regroup.
(25x^2 + 150x) + (4y^2 - 8y) = 0+171. Group the xs together and the ys together.
25(X^2 + 6x) + 4(y^2-2y) = 171. Factorising.
We are going to use completing the square method.
Coefficient of x in the first expression = 6.
Half of it = 1/2 * 6 = 3. (Note this value)
Square it = 3^2 = 9. (Note this value)
Coefficient of y in the second expression = -2.
Half of it = 1/2 * -2 = -1. (Note this value)
Square it = (-1)^2 = 1. (Note this value)
We are going to carry out a manipulation of completing the square with the values
9 and 1. By adding and substracting it.
25(X^2 + 6x) + 4(y^2-2y) = 171.
25(X^2 + 6x + 9 -9) + 4(y^2-2y + 1 -1) = 171
Note that +9 - 9 = 0. +1 -1 = 0. So the equation is not altered.
25(X^2 + 6x + 9) -25(9) + 4(y^2-2y + 1) -4(1) = 171
25(X^2 + 6x + 9) + 4(y^2-2y + 1) = 171+25(9) +4(1) Transferring the terms -25(9) and -4(1)
to other side of equation.
25(X^2 + 6x + 9) + 4(y^2-2y + 1) = 171+25(9) +4(1)
25(X^2 + 6x + 9) + 4(y^2-2y + 1) = 400
We now complete the square by using the value when coefficient was halved.
25(x+3)^2 + 4(y-1)^2 = 400
Divide both sides of the equation by 400
(25(x+3)^2)/400 + (4(y-1)^2)/400 = 400/400 Note also that, 16*25 = 400.
((x+3)^2)/16 + ((y-1)^2)/100 = 1
((x+3)^2)/(5^2) + ((y-1)^2)/(10^2) = 1
Comparing to the general format of an ellipse.
((x-h)^2)/(a^2) + ((y-k)^2)/(b^2) = 1
Coordinates of the center = (h,k).
Comparing with above (x+3) = (x - h) , h = -3.
Comparing with above (y-1) = (y - k) , k = 1.
Therefore center = (h,k) = (-3, 1).
You can easily draw the ellipse...Cheers.
4y^2 - 8y + 25x^2 +150x - 171 = 0 Rearrange and regroup.
(25x^2 + 150x) + (4y^2 - 8y) = 0+171. Group the xs together and the ys together.
25(X^2 + 6x) + 4(y^2-2y) = 171. Factorising.
We are going to use completing the square method.
Coefficient of x in the first expression = 6.
Half of it = 1/2 * 6 = 3. (Note this value)
Square it = 3^2 = 9. (Note this value)
Coefficient of y in the second expression = -2.
Half of it = 1/2 * -2 = -1. (Note this value)
Square it = (-1)^2 = 1. (Note this value)
We are going to carry out a manipulation of completing the square with the values
9 and 1. By adding and substracting it.
25(X^2 + 6x) + 4(y^2-2y) = 171.
25(X^2 + 6x + 9 -9) + 4(y^2-2y + 1 -1) = 171
Note that +9 - 9 = 0. +1 -1 = 0. So the equation is not altered.
25(X^2 + 6x + 9) -25(9) + 4(y^2-2y + 1) -4(1) = 171
25(X^2 + 6x + 9) + 4(y^2-2y + 1) = 171+25(9) +4(1) Transferring the terms -25(9) and -4(1)
to other side of equation.
25(X^2 + 6x + 9) + 4(y^2-2y + 1) = 171+25(9) +4(1)
25(X^2 + 6x + 9) + 4(y^2-2y + 1) = 400
We now complete the square by using the value when coefficient was halved.
25(x+3)^2 + 4(y-1)^2 = 400
Divide both sides of the equation by 400
(25(x+3)^2)/400 + (4(y-1)^2)/400 = 400/400 Note also that, 16*25 = 400.
((x+3)^2)/16 + ((y-1)^2)/100 = 1
((x+3)^2)/(5^2) + ((y-1)^2)/(10^2) = 1
Comparing to the general format of an ellipse.
((x-h)^2)/(a^2) + ((y-k)^2)/(b^2) = 1
Coordinates of the center = (h,k).
Comparing with above (x+3) = (x - h) , h = -3.
Comparing with above (y-1) = (y - k) , k = 1.
Therefore center = (h,k) = (-3, 1).
You can easily draw the ellipse...Cheers.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.