Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A rubber ball is dropped onto a hard surface from a height of 9 feet, and it bounces up and down. At each bounce it rises to 80% of the height from which it fell.
a. Find a formula for h(n), the height in inches reached by the ball on bounce n.
h(n) =

b. How high will the ball bounce on the 10 bounce?


c. How many bounces before the ball rises no higher than an inch?


Sagot :

There are 12 inches in a foot, so 9ft = 108in. Also, 80% = 0.8. Therefore the formula is: h(n) = 108 * 0.8^n. To find the bounce height after 10 bounces, substitute n=10 into the equation: h(n) = 108 * 0.8^10 = 11.60in (2.d.p.). Finally to find how many bounces happen before the height is less than one inch, substitute h(n) = 1, then rearrage with logarithms to solve for the power, x: 108 * 0.8^x = 1; 0.8^x = 1/108; Ln(0.8^x) = ln(1/108); xln(0.8) = ln(1\108); x = ln(1/108) / ln(0.8) = -4.682 / -0.223 = 21 bounces
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.