Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.


the lengths of the three sides of a triangle are 4, 7, and 8. is the triangle a right triangle?

Why or why not?


Sagot :

In a right-angled triangle, a^2 + b^2 = c^2 (Pythagoras' theorem), where c is the hypotenuse (longest side) and a and b are the other two. 4^2 + 7^2 = 16 + 49 = 65, and 8^2 = 64. These numbers are not equal so the triangle doesn't follow the theorem - therefore it is not right-angled.
If it's a right angled triangle, we should be able to set up an a²+b²=c² equation using 4,7 and 8. If this isn't possible, then the triangle isn't a right angled triangle. 

4²=16, 7²=49 and 8²=64.

-------------------------------------

4²+7²=16+49=11+5+49=65 (not 8²)

--------------------------------------

7²+8²=49+64=43+6+64=113 (not 4²)

--------------------------------------

4²+8²=16+64=80 (not 7²)

----------------------------------------

Using this information we can see that the triangle you have described is not a right angled triangle.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.