Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex]\displaystyle \int {6sin(3t)} \, dt = -2cos(3t) + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {6sin(3t)} \, dt[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {6sin(3t)} \, dt = 6\int {sin(3t)} \, dt[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = 3t[/tex]
- [u] Differentiate [Basic Power Rule, Multiplied Constant]: [tex]\displaystyle du = 3 \ dt[/tex]
Step 4: integrate Pt. 3
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {6sin(3t)} \, dt = 2\int {3sin(3t)} \, dt[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int {6sin(3t)} \, dt = 2\int {sin(u)} \, du[/tex]
- [Integral] Trigonometric Integration: [tex]\displaystyle \int {6sin(3t)} \, dt = -2cos(u) + C[/tex]
- Back-Substitute: [tex]\displaystyle \int {6sin(3t)} \, dt = -2cos(3t) + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.