Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
Kangaroo's maximum height is 6 m and the kangaroo's jump is 28 m long
Step-by-step explanation:
Given :[tex]y = -0.03(x - 14)^2 + 6[/tex]
To Find : What is the kangaroo's maximum height? How long is the kangaroo's jump?
Solution:
[tex]y = -0.03(x - 14)^2 + 6[/tex]
x is the horizontal distance in meters
y is the vertical distance in meters for the height of the jump.
Substitute y = 0
[tex]0 = -0.03(x - 14)^2 + 6[/tex]
[tex]0.03(x - 14)^2 = 6[/tex]
[tex](x - 14)^2 = \frac{6}{0.03}[/tex]
[tex](x - 14)^2 =200[/tex]
[tex](x - 14) =\sqrt{200}[/tex]
[tex](x - 14) =14.142[/tex]
[tex]x =14.142+14[/tex]
[tex]x =28.142[/tex]
x≈ 28 m
Now the maximum height will be attained at mid point i.e. [tex]\frac{28}{2} =14[/tex]
Now substitute x= 14
[tex]y = -0.03(14 - 14)^2 + 6[/tex]
[tex]y = 6[/tex]
So, kangaroo's maximum height is 6 m and the kangaroo's jump is 28 m long
- From the vertex of the quadratic equation, we find that: The kangaroos maximum height is of 6 meters.
- From the roots of the equation, we find that: The kangaroo's jump is 28.14 meters long.
----------------------------
Vertex of a quadratic function:
Suppose we have a quadratic function in the following format:
[tex]f(x) = ax^{2} + bx + c[/tex]
It's vertex is the point [tex](x_{v}, y_{v})[/tex]
In which
[tex]x_{v} = -\frac{b}{2a}[/tex]
[tex]y_{v} = -\frac{\Delta}{4a}[/tex]
Where
[tex]\Delta = b^2-4ac[/tex]
If a<0, the vertex is a maximum point, that is, the maximum value happens at [tex]x_{v}[/tex], and it's value is [tex]y_{v}[/tex].
----------------------------
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\Delta}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\Delta}}{2*a}[/tex]
[tex]\Delta = b^{2} - 4ac[/tex]
----------------------------
The quadratic equation is:
[tex]y = -0.03(x - 14)^2 + 6[/tex]
Placing in standard form:
[tex]y = -0.03(x^2 - 28x + 196) + 6[/tex]
[tex]y = -0.03x^2 + 0.84x + 0.12[/tex]
Thus, it has coefficients [tex]a = -0.03, b = 0.84, c = 0.12[/tex]
----------------------------
The kangaroo's maximum height is the y-value of the vertex, thus:
[tex]\Delta = b^2 - 4ac = (0.84)^2 - 4(-0.03)(0.12) = 0.72[/tex]
[tex]y_{v} = -\frac{\Delta}{4a} = -\frac{0.72}{4(-0.03)} = 6[/tex]
The kangaroos maximum height is of 6 meters.
----------------------------
The length of the kangaroo's jump is the positive root. The roots are found at the values of x for which y = 0, thus, the solutions of the quadratic equation.
[tex]x_{1} = \frac{-0.84 + \sqrt{0.72}}{2(-0.03)} = -0.14[/tex]
[tex]x_{2} = \frac{-0.84 - \sqrt{0.72}}{2(-0.03)} = 28.14[/tex]
The kangaroo's jump is 28.14 meters long.
A similar question is given at https://brainly.com/question/16858635
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.