Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

The Volume, Vcm3, of a tin of radius r cm is given by the formula V=π (40r-r2-r3). Find the positive value or r for which dV/dr=0, and find the value of V which corresponds to this value of r.

Sagot :

[tex]V=\pi (40r-r^2-r^3) \\V=40\pi r-\pi r^2-\pi r^3 \\\\ \frac{dV}{dr}=40\pi -2\pi r-3\pi r^2 \\\\ \frac{dV}{dr}=0 \\40\pi -2\pi r-3\pi r^2=0 \\40-2r-3r^2 = 0 \\3r^2+2r-40 = 0 \\3r^2+12r-10r-40 = 0 \\3r(r+4)-10(r+4)=0 \\(3r-10)(r+4) \\r=-4,10/3[/tex]

r is positive, so r =10/3 cm

So, if r =10/3:

[tex]V=\pi (40r-r^2-r^3) \\V = \pi(40(10/3)-(10/3)^2-(10/3)^3) \\V=\pi(400/3-100/9-1000/27) \\V =\pi(85.185...) \\V = 85.185...\pi \\V = 267.617... \\V = 268 cm^3 (3 s.f.)[/tex]