Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
let x= bread rolls and y = fruit muffins
X+Y=84
and
X-18=(5/6)Y
system of equations, substitute Y because we want X
X-18=(5/6)(84-X)
X-18=70-(5/6)X
(11/6)X=88
X=48 rolls
X+Y=84
and
X-18=(5/6)Y
system of equations, substitute Y because we want X
X-18=(5/6)(84-X)
X-18=70-(5/6)X
(11/6)X=88
X=48 rolls
Answer:
Henry baked 48 rolls.
Step-by-step explanation:
We are given the following information in the question:
Total number of rolls and fruit muffins baked = 84
Number of rolls given = 18
After giving away 18 rolls there are [tex]\frac{5}{6}[/tex] as many rolls as muffins.
Let x be the number of rolls and y be the number of fruit muffins.
Then, we can write the following equations:
[tex]x + y =84\\(x-18) = \displaystyle\frac{5}{6}y[/tex]
We have two equations in two variables. Solving the two equations, we have:
[tex]y =84-x\\(x-18) = \displaystyle\frac{5}{6}(84-x)\\\Rightarrow 6x - 108 = 420 - 5x\\\Rightarrow 11x = 528\\\rightarrow x = 48\\y = 84-48 = 36[/tex]
Thus, Henry baked 48 rolls and 36 fruit muffins.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.