Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
let's call the smaller number x:
y-x=5
xy=104
y-x=5 can be rewritten as y=x+5
Substituting this into the second equation gives:
x(x+5)=104
x^2+5x=104
x^2+5x-104=0
Then simply solve as a quadratic:
x^2+13x-8x-104=0
x(x+13) -8(x+13)=0
(x-8)(x+13) = 0
x=8,-13
the question said the numbers are positive, so x=8
if x=8,
y=x+5
y=13
So the two numbers are 8 and 13.
y-x=5
xy=104
y-x=5 can be rewritten as y=x+5
Substituting this into the second equation gives:
x(x+5)=104
x^2+5x=104
x^2+5x-104=0
Then simply solve as a quadratic:
x^2+13x-8x-104=0
x(x+13) -8(x+13)=0
(x-8)(x+13) = 0
x=8,-13
the question said the numbers are positive, so x=8
if x=8,
y=x+5
y=13
So the two numbers are 8 and 13.
The best way to do this is to find the factors of 104. For this I got 1, 2, 4, 8, 13, 26, 52 and 104. From this, you are then able to look at the two that have a difference of five, which in this case, is 8 and 13. You should then double check that when these are multipled, they are equal to 104, which they are. I'm not 100% sure if this is the answer that you are looking for, but the two numbers are 8 and 13
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.