Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
[tex]1+2+2^2+2^3+2^4+...+2^{2011}\\\\a_1=1;\ a_2=1\cdot2=2;\ a_3=2\cdot2=2^2;\ a_4=2^2\cdot2=2^3\\\vdots\\a_{2012}=2^{2010}\cdot2=2^{2011}[/tex]
[tex]The\ sum\ of\ a\ terms\ of\ geometric\ progression:S_n=\frac{a_1(1-r^n)}{1-r}\\\\a_1=1;\ r=2\\\\subtitute:\\\\S_{2012}=\frac{1(1-2^{2012})}{1-2}=\frac{1-2^{2012}}{-1}=2^{2012}-1\\\\Only\ that...(606\ digits,\ if\ you\ want\ how\ length\ this\ number)[/tex]
[tex]The\ sum\ of\ a\ terms\ of\ geometric\ progression:S_n=\frac{a_1(1-r^n)}{1-r}\\\\a_1=1;\ r=2\\\\subtitute:\\\\S_{2012}=\frac{1(1-2^{2012})}{1-2}=\frac{1-2^{2012}}{-1}=2^{2012}-1\\\\Only\ that...(606\ digits,\ if\ you\ want\ how\ length\ this\ number)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.