Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
3-2(Cosx)^2 - 3Sinx = 0.
Recall (Sinx)^2 + (Cosx)^2 = 1.
Therefore (Cosx)^2 = 1 - (Sinx)^2
Substitute this into the question above.
3-2(Cosx)^2 - 3Sinx = 0
3 - 2(1 - (Sinx)^2) - 3Sinx = 0 Expand
3 - 2 + 2(Sinx)^2 - 3Sinx = 0
1 + 2(Sinx)^2 - 3Sinx = 0 Rearrange
2(Sinx)^2 - 3Sinx + 1 = 0
Let p = Sinx
2p^2 - 3p + 1 = 0 Factorise the quadratic expression
2p^2 - p - 2p +1 = 0
p(2p -1) - 1(2p -1) = 0
(2p-1)(p -1) = 0
Therefore 2p-1=0 or (p-1) = 0
2p=0+1 or (p-1) = 0
2p=1 or p = 0 +1.
p=1/2 or p = 1 Recall p = Sinx
Therefore Sinx = 1/2 or 1.
For 0<x<360
Sinx =1/2, x = Sin inverse (1/2) , x = 30,
(180-30)- 2nd Quadrant = 150 deg
Sinx = 1, x = Sin inverse (1) , x = 90
Therefore x = 30,90 & 150 degrees.
Cheers.
Recall (Sinx)^2 + (Cosx)^2 = 1.
Therefore (Cosx)^2 = 1 - (Sinx)^2
Substitute this into the question above.
3-2(Cosx)^2 - 3Sinx = 0
3 - 2(1 - (Sinx)^2) - 3Sinx = 0 Expand
3 - 2 + 2(Sinx)^2 - 3Sinx = 0
1 + 2(Sinx)^2 - 3Sinx = 0 Rearrange
2(Sinx)^2 - 3Sinx + 1 = 0
Let p = Sinx
2p^2 - 3p + 1 = 0 Factorise the quadratic expression
2p^2 - p - 2p +1 = 0
p(2p -1) - 1(2p -1) = 0
(2p-1)(p -1) = 0
Therefore 2p-1=0 or (p-1) = 0
2p=0+1 or (p-1) = 0
2p=1 or p = 0 +1.
p=1/2 or p = 1 Recall p = Sinx
Therefore Sinx = 1/2 or 1.
For 0<x<360
Sinx =1/2, x = Sin inverse (1/2) , x = 30,
(180-30)- 2nd Quadrant = 150 deg
Sinx = 1, x = Sin inverse (1) , x = 90
Therefore x = 30,90 & 150 degrees.
Cheers.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.