Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A 90-kg tight end moving at 9.0 m/s encounters at 400 N•s impulse. Determine the velocity change of the tight end.


Sagot :

Δp=mΔv
400 N.s = (90kg) (vf-9m/s)
400 = 90 vf - 810
400 + 810 = 90 vf
1210 = 90vf 
vf= 13.4 m/s

Answer: The change velocity of the tight end is 4.44 m/s

Explanation:

Mass of the tight end = 90 kg

Initial velocity =[tex]u[/tex] = 9.0 m/s

Final velocity =[tex]v[/tex]

[tex]Impulse=Force\times Time[/tex]

[tex]Impulse=Mass \times acceleration\times Time[/tex]

[tex]a=\frac{dv}{dt}=\frac{[v-u]}{t}[/tex]

[tex]impulse=Mass \times [v-u][/tex]

[tex]400 Nm=90 kg\times[v-9.0 m/s][/tex]

[tex]v=13.44 m/s[/tex]

Change in velocity = 13.44 m/s - 9m/s = 4.44 m/s

The change velocity of the tight end is 4.44 m/s

Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.