Answered

Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A tennis coach took his team out for lunch and bought 8 hamburgers and 5 fries for $24. The players were still hungry so the coach bought 6 more hamburgers and 2 more fries for $16.60. Find the cost of each.

Sagot :

Basically this is a systems of equations question. We set up two equations, X is hamburgers Y is fries

8x + 5y = 24
6x + 2y = 16.60
 
then you solve for each to get your answer.

Answer : The cost of hamburgers and fries is, $2.5 and $0.8

Step-by-step explanation :

Let the cost of hamburgers be, x and the cost of fries be, y.

Thus the two equation will be:

[tex]8x+5y=24[/tex]     ...........(1)

[tex]6x+2y=16.60[/tex]    .............(2)

Using substitution method:

From equation 1 we have to determine the value of 'y'.

[tex]8x+5y=24[/tex]

[tex]5y=24-8x[/tex]

[tex]y=\frac{24-8x}{5}[/tex]        ........(3)

Now put equation 3 in 2, we get:

[tex]6x+2y=16.60[/tex]

[tex]6x+2\times (\frac{24-8x}{5})=16.60[/tex]

[tex]6x+(\frac{48-16x}{5})=16.60[/tex]

[tex]\frac{30x+48-16x}{5}=16.60[/tex]

[tex]30x+48-16x=83[/tex]

[tex]14x=35[/tex]

[tex]x=2.5[/tex]

Now put the value of x in equation 3, we get:

[tex]y=\frac{24-8x}{5}[/tex]

[tex]y=\frac{24-8\times 2.5}{5}[/tex]

[tex]y=\frac{24-20}{5}[/tex]

[tex]y=\frac{4}{5}[/tex]

[tex]y=0.8[/tex]

Thus, the cost of hamburgers and fries is, $2.5 and $0.8

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.