Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Find five consecutive integers whose sum is 195

Sagot :

To do this, come up with three numbers. These are n, n+1, n+2, n+3, and n+4.

To solve, you do this:

[tex]n+n+1+n+2+n+3+n+4=195 \\ 5n+10=195 \\ 5n+(10-10)=(195-10) \\ 5n=185 \\ \frac{5n}{5} = \frac{185}{5} \\ n=37 [/tex]

Then, substitute 37 into the numbers:

n=37
n+1=37+1=38
n+2=37+2=39
n+3=37+3=40
n+4=37+4=41

The five consecutive integers are 37, 38, 39, 40, and 41.
[tex]n;\ n+1;\ n+2;\ n+3;\ n+4-five\ consecutive\ integers\\\\(n)+(n+1)+(n+2)+(n+3)+(n+4)=195\\n+n+1+n+2+n+3+n+4=195\\5n+10=195\ \ \ \ \ |subtract\ 10\ from\ both\ sides\\5n=185\ \ \ \ \ \ |divide\ both\ sides\ by\ 5\\n=37\\\\Answer:\boxed{37;\ 38;\ 39;\ 40;\ 41}[/tex]