At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
[tex]x=\pm \sqrt{\frac{3}{10}}[/tex]
Step-by-step explanation:
[tex]-10x^2+12-9=0\\\\-10x^2+3=0\\\\-10x^2=-3\\\\x^2=\frac{-3}{-10}\\\\x^2=\frac{3}{10}\\\\[/tex]
here we have to cases
case 1
[tex]x=\sqrt{\frac{3}{10}}\\[/tex]
case 2
[tex]x=-\sqrt{\frac{3}{10}}[/tex]
Given:
Consider the given equation is
[tex]-10x^2+12x-9=0[/tex]
To find:
The roots of x in the given equation.
Solution:
We have,
[tex]-10x^2+12x-9=0[/tex]
On comparing this equation with [tex]ax^2+bx+c=0[/tex], we get
[tex]a=-10,b=12,c=-9[/tex]
Using quadratic formula, we get
[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\dfrac{-(12)\pm \sqrt{(12)^2-4(-10)(-9)}}{2(-10)}[/tex]
[tex]x=\dfrac{-12\pm \sqrt{144-360}}{-20}[/tex]
[tex]x=\dfrac{-12\pm \sqrt{-216}}{-20}[/tex]
We know that, [tex]\sqrt{-1}=i[/tex].
[tex]x=\dfrac{-12\pm 6\sqrt{6}i}{-20}[/tex]
[tex]x=\dfrac{-2(6\mp 3\sqrt{6}i)}{-20}[/tex]
[tex]x=\dfrac{6\mp 3\sqrt{6}i}{10}[/tex]
[tex]x=\dfrac{6+3\sqrt{6}i}{10}[/tex] and [tex]x=\dfrac{6-3\sqrt{6}i}{10}[/tex]
Therefore, the roots of the given equation are [tex]x=\dfrac{6+3\sqrt{6}i}{10}[/tex] and [tex]x=\dfrac{6-3\sqrt{6}i}{10}[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.