At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

O is the centre of the circle and ABC and EDC are rangers to the circle. Find the side of angle BCD. You must give reason in your answer. (4marks)PLZZZZZZ HELP!!

O Is The Centre Of The Circle And ABC And EDC Are Rangers To The Circle Find The Side Of Angle BCD You Must Give Reason In Your Answer 4marksPLZZZZZZ HELP class=

Sagot :

Every line from the tangent to the centre is 90°. This is said in the circle theorems.

So angle OBC and ODC are 90°.

angle O is twice the size of angle F. This is another circle theorem.

Therefore angle O is 152°.

The quadrilateral of ODBC would equal to 360°. Which means 90° + 90° + 152° = 332°

360° - 332° = 28°.

The answer is 28°

Answer:

∠BCD = 28°

Step-by-step explanation:

arc BD = 2 x inscribed angle ∠BFD = 2 x 76 = 152

arc BFE = 360 - arc BD = 360 - 152 = 208

tangent-tangent angle ∠BCD = (arc BFE - arc BD)/2 = (208 - 152)/2 = 28

View image kenlingdad
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.