Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
1) z = -6.32
2) p-value = 0.001 × 10^(-2)
3) we will reject the null hypothesis and conclude that there is enough evidence to support the claim that fewer than half of adult Americans can name at least one justice currently serving on the Supreme Court
Step-by-step explanation:
We are told that In a representative sample of 1000 adult Americans, only 400 could name at least one justice.
Thus:
Sample proportion; p^ = 400/1000 = 0.4
Sample size: n = 1000
We want to find if there is convincing evidence to support the claim that fewer than half of adult Americans can name at least one justice.
Thus, the hypothesis is defined as;
Null hypothesis:H0: p ≥ 0.5
Alternative hypothesis: Ha < 0.5
Formula for the test statistic is;
z = (p^ - p)/√(p(1 - p)/n)
Plugging in the relevant values;
z = (0.4 - 0.5)/√(0.5(1 - 0.5)/1000)
z = -6.32
From online p-value from z-score calculator attached, using z = -6.32; significance level of 0.01; one tailed hypothesis;
We have:
p-value = 0.00001 = 0.001 × 10^(-2)
The p-value is less than the significance level and so we will reject the null hypothesis and conclude that there is enough evidence to support the claim that fewer than half of adult Americans can name at least one justice currently serving on the Supreme Court
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.