Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
(a) the runner's kinetic energy at the given instant is 308 J
(b) the kinetic energy increased by a factor of 4.
Explanation:
Given;
mass of the runner, m = 64.1 kg
speed of the runner, u = 3.10 m/s
(a) the kinetic energy of the runner at this instant is calculated as;
[tex]K.E_i = \frac{1}{2} mu^2\\\\K.E_i = \frac{1}{2} \times 64.1 \times 3.1^2\\\\K.E_i = 308 \ J[/tex]
(b) when the runner doubles his speed, his final kinetic energy is calculated as;
[tex]K.E_f = \frac{1}{2} mu_f^2\\\\K.E_f = \frac{1}{2} m(2u)^2\\\\K.E_f = \frac{1}{2} \times 64.1 \ \times (2\times 3.1)^2\\\\K.E_f = 1232 \ J[/tex]
the change in the kinetic energy is calculated as;
[tex]\frac{K.E_f}{K.E_i} = \frac{1232}{308} =4[/tex]
Thus, the kinetic energy increased by a factor of 4.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.