Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
The probability that the value of the second die is higher than the first
[tex]P(E) = \frac{15}{36} = \frac{5}{12}[/tex]
Step-by-step explanation:
Explanation:-
In a single throw with two dice total number of sums = 6 X 6 = 36
Let 'E' be the event of the second die is higher than the first
Total number of cases
= {( 1,1), (1,2 )( 1,3), (1,4) , (1,5) ,(1,6)
( 2,1), (2,2 )( 2,3), (2,4) , (2,5),(2,6)
( 3,1), (3,2 )( 3,3), (3,4) , (3,5),(3,6)
( 4,1), (4,2 )( 4,3), (4,4) , (4,5),(4,6)
( 5,1), (5,2 )( 5,3), (5,4) , (5,5),(5,6)
( 6,1), (6,2 )( 6,3), (6,4) , (6,5),(6,6)}
The favourable cases
n(E) = {(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)} = 15
The probability that the value of the second die is higher than the first
[tex]P(E) = \frac{15}{36} = \frac{5}{12}[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.