Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

write the explicit formula for the geometric sequence 64,32,16,8

Sagot :

Answer:

[tex]a_{n}[/tex] = 64 [tex](\frac{1}{2}) ^{n-1}[/tex]

Step-by-step explanation:

The explicit formula for a geometric sequence is

[tex]a_{n}[/tex] = a₁ [tex](r)^{n-1}[/tex]

where a₁ is the first term and r the common ratio

Here a₁ = 64 and r = [tex]\frac{a_{2} }{a_{1} }[/tex] = [tex]\frac{32}{64}[/tex] = [tex]\frac{1}{2}[/tex] , then explicit formula is

[tex]a_{n}[/tex] = 64 [tex](\frac{1}{2}) ^{n-1}[/tex]