Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
AB = 3 and AC = 4
Step-by-step explanation:
Given that the triangles are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{AB}{WX}[/tex] = [tex]\frac{BC}{WY}[/tex] , substitute values
[tex]\frac{AB}{30}[/tex] = [tex]\frac{3}{30}[/tex] ( cross- multiply )
30AB = 90 ( divide both sides by 30 )
AB = 3
and
[tex]\frac{AC}{XY}[/tex] = [tex]\frac{BC}{WY}[/tex] , substitute values
[tex]\frac{AC}{40}[/tex] = [tex]\frac{3}{30}[/tex] ( cross- multiply )
30AC = 120 ( divide both sides by 30 )
AC = 4
Answer:
- AB = 3
- AC = 4
Step-by-step explanation:
- Let AB = x
- Let AC = y
Given
ΔWXY ~ ΔBAC
Therefore, the triangles are similar, so corresponding sides would be in the same ratio, so
WY/ BC = XW/AB
substitute WY = 30, BC = 3, XW = 30, AB = x
30 / 3 = 30 / x
x = [30 × 3] / [30]
x = 90 / 30
x = 3
Thus,
AB = 3
now
WY/ BC = XY/AC
substitute WY = 30, BC = 3, XY = 40, AC = y
30 / 3 = 40 / y
y = [40 × 3] / [30]
y = 120 / 30
y = 4
Thus,
AC = 4
Therefore,
- AB = 3
- AC = 4
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.