Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Find the resultant of two forces 130 N and 110 N respectively, acting at an angle whose tangent
is 12/5.​


Sagot :

Answer:

[tex]F_r = 200N[/tex]

Explanation:

Given

Let the two forces be

[tex]F_1 = 130N[/tex]

[tex]F_2 = 110N[/tex]

and

[tex]\tan(\theta) = \frac{12}{5}[/tex]

Required

Determine the resultant force

Resultant force (Fr) is calculated using:

[tex]F_r^2 = F_1^2 + F_2^2 + 2F_1F_2\cos(\theta)[/tex]

This means that we need to first calculate [tex]\cos(\theta)[/tex]

Given that:

[tex]\tan(\theta) = \frac{12}{5}[/tex]

In trigonometry:

[tex]\tan(\theta) = \frac{Opposite}{Adjacent}[/tex]

By comparing the above formula to [tex]\tan(\theta) = \frac{12}{5}[/tex]

[tex]Opposite = 12[/tex]

[tex]Adjacent = 5[/tex]

The hypotenuse is calculated as thus:

[tex]Hypotenuse^2 = Opposite^2 + Adjacent^2[/tex]

[tex]Hypotenuse^2 = 12^2 + 5^2[/tex]

[tex]Hypotenuse^2 = 144 + 25[/tex]

[tex]Hypotenuse^2 = 169[/tex]

[tex]Hypotenuse = \sqrt{169[/tex]

[tex]Hypotenuse = 13[/tex]

[tex]\cos(\theta)[/tex] is then calculated using:

[tex]\cos(\theta)= \frac{Adjacent}{Hypotenuse}[/tex]

[tex]\cos(\theta)= \frac{5}{13}[/tex]

Substitute values for [tex]F_1[/tex], [tex]F_2[/tex] and [tex]cos(\theta)[/tex] in

[tex]F_r^2 = F_1^2 + F_2^2 + 2F_1F_2\cos(\theta)[/tex]

[tex]F_r^2 = 130^2 + 110^2 + 2*130*110*\frac{5}{13}[/tex]

[tex]F_r^2 = 16900 + 12100 + 11000[/tex]

[tex]F_r^2 = 40000[/tex]

Take square roots of both sides

[tex]F_r = \sqrt{40000[/tex]

[tex]F_r = 200N[/tex]

Hence, the resultant force is 200N